地理位置索引支持是MongoDB的一大亮点,这也是全球最流行的LBS服务foursquare 选择MongoDB的原因之一。我们知道,通常的数据库索引结构是B+ Tree,如何将地理位置转化为可建立B+Tree的形式,下文将为你描述。
首先假设我们将需要索引的整个地图分成16×16的方格,如下图(左下角为坐标0,0 右上角为坐标16,16):

单纯的[x,y]的数据是无法建立索引的,所以MongoDB在建立索引的时候,会根据相应字段的坐标计算一个可以用来做索引的hash值,这个值叫做geohash,下面我们以地图上坐标为[4,6]的点(图中红叉位置)为例。
我们第一步将整个地图分成等大小的四块,如下图:

划分成四块后我们可以定义这四块的值,如下(左下为00,左上为01,右下为10,右上为11):
01 | 11 |
00 | 10 |
这样[4,6]点的geohash值目前为 00
然后再将四个小块每一块进行切割,如下:

这时[4,6]点位于右上区域,右上的值为11,这样[4,6]点的geohash值变为:0011
继续往下做两次切分:


最终得到[4,6]点的geohash值为:00110100
这样我们用这个值来做索引,则地图上点相近的点就可以转化成有相同前缀的geohash值了。
我们可以看到,这个geohash值的精确度是与划分地图的次数成正比的,上例对地图划分了四次。而MongoDB默认是进行26次划分,这个值在建立索引时是可控的。具体建立二维地理位置索引的命令如下:
db.map.ensureIndex({point : “2d”}, {min : 0, max : 16, bits : 4})
其中的bits参数就是划分几次,默认为26次。
我们一直都在努力坚持原创.......请不要一声不吭,就悄悄拿走。
我原创,你原创,我们的内容世界才会更加精彩!
【所有原创内容版权均属TechTarget,欢迎大家转发分享。但未经授权,严禁任何媒体(平面媒体、网络媒体、自媒体等)以及微信公众号复制、转载、摘编或以其他方式进行使用。】
微信公众号

TechTarget
官方微博

TechTarget中国
作者
相关推荐
-
2017年1月数据库流行度排行榜 新年新气象
新年新气象,数据库知识网站DB-engines最近更新了2017年1月份数据库流行度榜单。TechTarget数据库网站将与您分享1月份的榜单排名情况,让我们拭目以待。
-
2016年12月数据库流行度排行榜 几家欢乐几家愁
在过去的6个月中,数据库排行榜的前二十名总体上没有太大的变动,那么数据库知识网站DB-engines最近更新的2016年12月份数据库流行度排名情况是否一如既往的沉寂、低调呢?
-
数据库和数据仓库的区别在哪儿?
目前,大部分数据仓库还是用数据库进行管理。数据库是整个数据仓库环境的核心,是数据存放的地方和提供对数据检索的支持。
-
2016年10月数据库流行度排行榜 两组数据库棋逢对手
数据库知识网站DB-engines更新了2016年10月份的数据库流行度排行榜,10月份的榜单又有哪些变化,哪些惊喜呢?